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ABSTRACT

We describe a parallel benchmark procedure and numerical results for a three-dimensional
binary stochastic medium particle transport benchmark problem. The binary stochastic
medium is composed of optically thick spherical inclusions distributed in an optically thin
background matrix material. We investigate three sphere mean chord lengths, three dis-
tributions for the sphere radii (constant, uniform, and exponential), and six sphere volume
fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we
solve the associated transport problem using the Mercury Monte Carlo particle transport
code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and
transmission through the spatial domain as well as absorption in the spherical inclusion and
background matrix materials. For the parameter values investigated, we find a significant
dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and
sphere volume fraction, with the most dramatic variation occurring for the transmission
through the spatial domain. We find a weaker dependence of most benchmark tally quanti-
ties on the distribution describing the sphere radii, provided the sphere mean chord length
used is the same in the different distributions. The exponential distribution produces larger
differences from the constant distribution than the uniform distribution produces. The trans-
mission through the spatial domain does exhibit a significant variation when an exponential
radius distribution is used.

Key Words: binary stochastic medium, Monte Carlo, particle transport

1. INTRODUCTION

A stochastic medium is one in which the material properties at a given point in space are only
known statistically [1]. Particle transport through stochastic media is encountered in various
applications. High temperature gas-cooled reactors contain microsphere fuel kernels of a constant
size stochastically distributed in a graphite matrix within a spherical fuel pebble or a cylindrical
fuel compact [2, 3]. Neutron transport in boiling water reactors involves transport through
a stochastic medium composed of liquid water and water vapor [1], in which case the water
vapor bubbles can be modeled as spheres of different sizes as a result of bubble coalescence
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and breakup [4]. Inertial confinement fusion targets may develop hydrodynamic instabilities at
material interfaces resulting in particle transport through a turbulent mixture [1, 5] involving
materials of varying size and shape [6, 7]. The work in this paper is aimed at turbulent mixture
problems and investigates the impact of varying inclusion size and different size distributions on
particle transport through a binary stochastic medium.

The development of algorithms to simulate particle transport through binary stochastic mix-
tures has received significant research attention in the last two decades [1, 8]. Much of the
research has focused on the development and analysis of approximate models for the solution
of such particle transport problems. The most common approach to solving particle transport
problems involving binary stochastic media is to use the atomic mix approximation [1] in which
the transport problem is solved using ensemble-averaged material properties. The atomic mix
approximation is appealing because of its simplicity and computational efficiency but may not
be accurate enough depending on the details of the stochastic material properties. The most
ubiquitous approximate deterministic model developed specifically for solving binary stochastic
media transport problems is often referred to as the Levermore-Pomraning model or the Stan-
dard Model [1, 8]. Zimmerman [9] and Zimmerman and Adams [10] first proposed Monte Carlo
algorithms for solving binary stochastic medium transport problems. They proposed a base
Monte Carlo algorithm that is equivalent to the Levermore-Pomraning equations and another
Monte Carlo algorithm that possesses increased accuracy as a result of improved local material
realization modeling.

The accuracy of the Levermore-Pomraning deterministic model and the Zimmerman-Adams
Monte Carlo models has previously been examined in one-dimensional planar geometry using
a suite of benchmark problems involving a non-stochastic isotropic angular flux incident on
one boundary of a binary stochastic medium [10, 11]. The benchmark results were generated
by sampling independent material realizations, solving using a discrete ordinates algorithm the
transport problem for each independent realization, and ensemble averaging the results. Recent
work has extended the benchmark results to include interior source problems [12, 13].

Two-dimensional [14] and three-dimensional [3, 15–17] binary stochastic medium benchmark
results have previously been generated for use in assessing the accuracy of Monte Carlo parti-
cle transport algorithms for binary stochastic media. The binary stochastic medium in these
benchmark simulations consisted of spherical inclusions in a background matrix material. These
benchmark results were obtained by sampling independent material realizations, solving using
a Monte Carlo algorithm the transport problem for each independent realization, and ensemble
averaging the results. In these examples, the radii of the spherical inclusions in the background
matrix were assumed to be described by a constant distribution, i.e. the inclusions were of a
single constant radius. This assumption is appropriate for the modeling of pebble bed reac-
tors, for example, but may not be appropriate for the generation of benchmark results aimed
at assessing the accuracy of algorithms for modeling particle transport through turbulent me-
dia. Two-dimensional binary stochastic medium benchmark results [6] have been generated
for the case of material realizations with inclusions of random size and shape produced by the
intersection of lines with lengths distributed according to Markovian statistics.

Olson [18] has generated two- and three-dimensional binary stochastic medium benchmark re-
sults for problems in which spherical inclusions have different constant radii as well as for the
case in which the radius of the inclusions is described by an exponential distribution. The

2011 International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011

2/15



Three-Dimensional Binary Stochastic Medium Particle Transport

work in that paper is aimed at photon transport problems in which the radiation field is cou-
pled to the matter through a material energy balance equation, and the primary focus is on
two-dimensional benchmark results. The three-dimensional benchmark results presented in the
paper were obtained using a single material realization, did not include the effects of scattering
for radiation-only problems, and used a low-order P1/3 angular approximation to solve the trans-
port problem with spatial resolution restricted by serial computing simulation time limitations.
Because the benchmark results were obtained using a deterministic method, the geometry of the
spherical inclusions was not modeled exactly.

In this paper, we focus on linear particle transport problems in a three-dimensional binary
stochastic medium. We investigate the effect of varying inclusion sphere radius on the trans-
port of particles through the medium. In particular, we investigate spherical inclusions whose
radii are described by a constant, a uniform, and an exponential distribution. For the case of
a constant distribution, we investigate the effects on the particle transport solution of differing
radii of inclusions. The cases with spherical inclusions whose radii are distributed according to
a uniform and an exponential distribution help to further assess the effects of differing radii in
a single realization. For the benchmark transport problem investigated, the work in this paper
investigates the questions of how the ensemble-averaged benchmark tallies vary as a function
of 1) the spherical inclusion mean chord length (radius), 2) the spherical inclusion volume frac-
tion, and 3) the distribution describing the spherical radii. The material parameters we use
in this benchmark study are variations of parameters originally used by Adams et al. [11] in
the generation of one-dimensional benchmark transport solutions and provide a connection to
our recent related work [13]. We generate benchmark results by sampling independent material
realizations, solving the transport problem for each independent realization using the Mercury
Monte Carlo particle transport code [19], and ensemble averaging the tally results. Because we
solve the transport problems using Monte Carlo particle transport, the geometry is modeled
exactly and the solution of the transport problem involves no angular discretization or expan-
sion truncation. In addition, we are able to simulate a large number of independent material
realizations in a reasonable time using a parallel algorithm.

The work described in this paper improves the understanding of the impact of varying spher-
ical inclusion radius and different radius distributions on particle transport through a binary
stochastic medium. This understanding may prove beneficial for applications involving parti-
cle transport through turbulent media composed of inclusions of varying sizes. In addition,
the benchmark results produced in this work will be useful in assessing the accuracy of multi-
dimensional Monte Carlo particle transport algorithms aimed at solving these types of problems.

The remainder of this paper is organized as follows. We describe the benchmark transport prob-
lem along with the numerical procedures used to generate the benchmark solutions in Section 2.
We examine the ensemble-averaged tally results obtained with the different sphere mean chord
lengths and sphere radius distributions in Section 3. We give general conclusions and suggestions
for future work in Section 4.

2. BENCHMARK TRANSPORT PROBLEM SUITE

In this section, we first describe the binary stochastic medium benchmark transport problem
we investigate in this paper. We then describe the parallel procedure used to generate the
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benchmark solutions.

We consider the following time-independent monoenergetic particle transport problem with
isotropic scattering in a three-dimensional cubic spatial domain D defined by 0 ≤ x, y, z ≤ L
with outer boundary ∂D:

Ω · ∇ψ (x,Ω) + σt (x)ψ (x,Ω) =
σs (x)

4π

∫
4π
ψ

(
x,Ω′) d2Ω′ . (1)

Here we have used standard neutronics notation [20]: ψ is the angular flux of particles [#/cm2-
s-steradian] at a position x = (x, y, z) traveling in direction Ω; σt (x) is the macroscopic total
cross section [cm−1] at position x; and σs (x) is the macroscopic scattering cross section [cm−1]
at position x. An isotropic angular flux with unity incoming current is incident on the left edge
of the domain at x = 0:

ψ (x = 0, y, z,Ω) =
1
2π

, 0 ≤ y, z ≤ L , Ω · n < 0 , (2)

where n is the unit outer normal to ∂D at a position x on the boundary. A vacuum boundary
condition is imposed on the right edge of the domain at x = L:

ψ (x = L, y, z,Ω) = 0 , 0 ≤ y, z ≤ L , Ω · n < 0 . (3)

The boundaries on all other transverse edges of the cubic domain are reflecting. The transport
problem is depicted schematically in Fig. 1. We assume that the binary stochastic medium is
composed of optically thick spherical inclusions with uniform material properties distributed
in an optically thin background matrix material also with uniform material properties. The
benchmark ensemble-averaged fiducial quantities of interest are the reflection and transmission
rates as well as the absorption rates in the sphere and background matrix materials.

L = 10

Transmission

Reflection

Figure 1: Transport problem configuration.
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We investigate a suite of binary stochastic medium benchmark problems characterized by the
material parameters given in Table I. Here material zero is an optically thin background matrix
material, material one is an optically thick spherical inclusion material, and Λi is the mean chord
length for material i. Both materials are assumed to have a scattering ratio of c = σs/σt = 0.9.
These material parameters are variations of parameters originally used by Adams et al. [11] in
the generation of one-dimensional benchmark transport solutions and provide a connection with
recent related work [13]. The different case numbers in our benchmark suite represent variations
of the spherical inclusion radii as defined by the mean chord length through the sphere. The
mean chord length for any non-reentrant body is given by Λ = 4V/A, where V is the volume
of the body and A is the surface area of the body. For a sphere of radius R, Λsphere = 4R/3.
Different distributions of sphere radii characterized by a mean radius R will have different mean
chord length values, as described below. For each sphere mean chord length case (1, 2, and 3),
six different sphere volume fractions f1 (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) are considered,
where the sphere volume fraction f1 is defined as the total volume of all spherical inclusions
divided by the volume of the problem domain. If the sphere volume fraction f1 and the sphere
mean chord length Λ1 are known, the mean chord length in the background matrix material can
be computed as Λ0 = (1/f1 − 1) Λ1 [1, 21] for an infinite medium (ignoring boundary effects).
Consistent with previous one-dimensional work [11, 13], we assume a domain size of L = 10.

Table I: Material parameters for benchmark transport problems

Case σ0
t Λ∗

0 σ0
t Λ0 σ1

t Λ1 σ1
t Λ1 c

1 99/40 0.25 11/40 2.5
2 10/99 99/20 0.5 100/11 11/20 5.0 0.9
3 99/10 1.0 11/10 10.0

∗ For 10% sphere volume fraction

Adams et al. [11] investigated in one spatial dimension a significantly broader range of material
parameters. However, this broader range of parameters results in a significant proliferation of
test cases to be simulated and an ensuing difficulty in productively analyzing the resulting large
amount of data. As a result, we have chosen to restrict our benchmark suite to a single set of
macroscopic total cross sections as given in Table I, with both the matrix and sphere materials
having a scattering ratio of c = σs/σt = 0.9.

We generated the benchmark solutions using an extension of the parallel methodology previously
described in Ref. [13]. The benchmark procedure generally consists of using a Python driver
script to 1) sample an independent material realization and write the spherical inclusion loca-
tions and radii to a file, 2) solve the transport problem using the Mercury Monte Carlo particle
transport code [19] for the sampled realization and tally the leakage and absorption rates for that
realization, and 3) average the tally results for all realizations to obtain ensemble-averaged val-
ues. One instance of an independent material realization is generated using a random sequential
addition (RSA) technique [22] by 1) sampling the radii of the spheres from the appropriate dis-
tribution until the desired sphere volume fraction is reached, 2) uniformly sampling the (x, y, z)
points for sphere locations, and 3) rejecting spheres overlapping previously-sampled spheres or
the problem boundary. We have implemented a C++ code that can use either a simple RSA
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method or a “fast RSA” method proposed by Brown [23] when the number of spheres to be
sampled is large.

We investigate three sphere radius distributions in this paper: a constant distribution, a uniform
distribution, and an exponential distribution. These distributions were previously used by Olson
et al. [21] in the investigation of background chord length distributions in binary stochastic
media. The radius probability distribution function p (r) for each of the distributions along with
the relationship between the sphere mean chord length Λ1 and the sphere mean radius R [21]
are given by

• Constant radius distribution: p (r) = δ (r −R), R = 3
4Λ1;

• Uniform radius distribution: p (r) = 1
2R for 0 ≤ r ≤ 2R, R = 1

2Λ1;

• Exponential radius distribution: p (r) = 1
R exp

(
− r

R

)
for 0 ≤ r ≤ L

6 , R = 1
4Λ1.

During the sampling of the material realizations, the appropriate number of spheres are sampled
to produce the desired sphere volume fraction. For the constant radius distribution, we sampled
the number of spheres required to equal or exceed the desired sphere volume fraction. For the
uniform and exponential radius distributions, the last sampled sphere radius was reduced to
exactly produce the desired sphere volume fraction. For the exponential radius distribution, we
heuristically limited the maximum sampled sphere radius to be 1/6 of the domain edge length
L to avoid problems placing multiple large spheres in the problem domain. Because only sphere
locations are rejected and resampled (not the sphere radii) during the generation of a realization,
no skew towards smaller sphere radii is introduced for the uniform and exponential sphere radius
distributions.

Because no spheres are allowed to overlap the vacuum and reflecting boundaries of the problem
domain, the distribution of spheres near these boundaries will be different than in the interior of
the spatial domain [21]. The extent of this boundary layer region in a given material realization
depends on the maximum sphere radius in the realization. Additional work is required to
quantify the impact of this effect on our benchmark results. The boundary layer effect near the
transverse reflecting boundaries could be reduced (at the cost of additional computing expense)
by using a significantly larger width in those dimensions.

Given a single material realization of the binary stochastic medium, the transport problem
described by Eqs. (1)–(3) is solved for that realization using the Mercury Monte Carlo particle
transport code [19]. For each material realization, the tally quantities of interest are the reflection
and transmission rates as well as the absorption rates in the sphere and background matrix
materials. This procedure is repeated a large number M of times and the results averaged to
obtain ensemble-averaged values. The ensemble-averaged reflection rate at x = 0, 〈Jreflection〉,
is given by

〈Jreflection〉 =
1
M

M∑
m=1

∫ L

0

∫ L

0

∫
Ω·n>0

Ω · nψm (x = 0, y, z,Ω) dΩdydz , (4)

where ψm (x, y, z,Ω) is the angular flux computed for realization m and n is the unit outer
normal to ∂D at a position x = (0, y, z) on the boundary. Similarly, the ensemble-averaged
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transmission rate at x = L, 〈Jtransmission〉, is given by

〈Jtransmission〉 =
1
M

M∑
m=1

∫ L

0

∫ L

0

∫
Ω·n>0

Ω · nψm (x = L, y, z,Ω) dΩdydz . (5)

The reflection and transmission rates were tallied in Mercury for each material realization using
an analog estimator. The ensemble-averaged absorption rate in material i, 〈Ai〉, i = 0, 1, is
given by

〈Ai〉 =
1
M

M∑
m=1

∫
D
χi,m (x)σi

t (1− c)
∫
4π
ψm (x,Ω) dΩdx , (6)

where c is the scattering ratio and χi,m (x) is a characteristic function that is unity if material i
is present at location x in material realization m and is zero otherwise. The material absorption
rates were tallied in Mercury for each material realization using a pathlength estimator.

In addition to the ensemble-averaged tally values described above, we also compute the standard
deviation in the realization tallies about the ensemble-averaged mean value. This standard
deviation gives an indication of the spread of the independent material realization tally values
about the ensemble-averaged mean value. For a generic tally Q, the standard deviation, σQ, is
given by

σQ =
√
〈Q2〉 − 〈Q〉2 , (7)

where 〈Q〉 and
〈
Q2

〉
are the ensemble-averaged mean and mean squared tally values, respectively.

An estimate of the standard deviation of the ensemble-averaged mean tally 〈Q〉, σ〈Q〉, is given
by

σ〈Q〉 =
σQ√
M

. (8)

This estimated standard deviation provides an estimate of the uncertainty of the ensemble-
averaged mean tally value about the true mean value. Because we used a Monte Carlo algorithm
to solve the transport problem associated with the independent material realization, Eqs. (7) and
(8) should include a term accounting for the stochastic nature of the Monte Carlo solution. The
Mercury Monte Carlo particle transport code does not currently provide statistical uncertainty
estimates for the user-defined tallies used to obtain the results in this paper. As a result, our
statistical uncertainty estimates must currently be viewed as lower bounds. In the discussion of
our numerical results, we quote the standard deviation as a relative value defined as σ〈Q〉/ 〈Q〉.

We use a parallel algorithm to generate the benchmark results in order to increase the compu-
tational efficiency of the benchmark procedure. The Python driver script uses the pyMPI [24]
Python extension to parallelize using the MPI message passing interface [25] the simulation of
the independent material realizations. The total number of realizations to be simulated are
divided among the allocated processors. Each Mercury simulation can be run using one pro-
cessor or using multiple processors with particle parallelism, where the number of processors
is designated by the user. For a given total number of available processors P , one can choose
to simultaneously run P independent Mercury simulations on one processor each or P/K inde-
pendent Mercury simulations on K − 1 processors each (the other processor is used to run the
Python driver script and the C++ code used to sample the material realizations.) This paral-
lelization algorithm is very efficient, as each independent material realization can be simulated
with no parallel communication with other processes required until all of its computational work
is completed. Care must be exercised to ensure that independent random number streams are
utilized on each MPI process.
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3. NUMERICAL RESULTS

In this section, we present the numerical results for the binary stochastic medium benchmark
simulations performed. The benchmark simulations were performed on the Zeus machine at
Lawrence Livermore National Laboratory, a Linux cluster with eight Intel 2.4 GHz CPUs per
compute node. Each benchmark simulation used 50 nodes (400 processors), with each Mercury
simulation using seven processors of the node to simulate the particle transport and one processor
dedicated to running the Python driver script and the material realization sampling code.

The benchmark results were generated using M = 100 independent material realizations for each
sphere mean chord length case, for each sphere volume fraction value, and for each sphere radius
distribution. As a result, the benchmark results described in this paper required a total of 5,400
three-dimensional Monte Carlo particle transport simulations. Each Monte Carlo simulation for
an independent material realization used 2×106 particle histories. This number of Monte Carlo
particles was chosen such that each benchmark set of M = 100 independent material realizations
would complete in the maximum batch job limit (sixteen hours) on the Zeus machine. With
this number of particles, the standard deviation of the ensemble-averaged mean for each tally
was computed to be less than 2% for all cases. (We generated independent benchmark suite
numerical results from 5,400 simulations using a different random number stream, and the
ensemble-averaged tally values agreed with the original suite to within 2.2% in all cases.) The
compute time required for each benchmark set of M = 100 realizations varied from less than
one minute to 675 minutes. The set with the smallest mean chord length (case 1) and largest
sphere volume fraction value (0.3) were the most expensive to compute as a result of the larger
number of spheres and hence Monte Carlo cells in the problem. The exponential sphere radius
distribution results were the most expensive to obtain.

3.1 Constant Sphere Radius Distribution Results

In this section, we examine the benchmark results for cases in which the spheres have a constant
radius for a given set of material realizations. The different sphere mean chord length cases have
different constant sphere radii, so our results demonstrate the effects of differing sphere radii
on the ensemble-averaged reflection, transmission, sphere absorption, and matrix absorption
rates. These benchmark results also demonstrate the impact of sphere volume fraction on the
ensemble-average tally values. The ensemble-averaged tally results are plotted in Fig. 2.

The reflection rate for the different sphere mean chord length cases and sphere volume fractions
are plotted (with a suppressed zero) in Fig. 2(a). For a given sphere volume fraction, the
reflection rate decreases with increasing sphere radius (i.e. the case 3 reflection rate is lower
than the case 1 reflection rate). For a given sphere mean chord length case, the reflection
rate is relatively constant but exhibits a non-monotonic behavior with increasing sphere volume
fraction and is highest at the largest sphere volume fraction.

The transmission rate for the different sphere mean chord length cases and sphere volume fraction
values are plotted on a log scale in Fig. 2(b). Significant differences can be observed in the
transmission rates for the different sphere mean chord length cases and different sphere volume
fractions. For a given sphere volume fraction, the transmission rate increases with increasing
sphere radius (i.e. the case 3 transmission rate is higher than the case 1 rate). The differences in
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Figure 2: Constant sphere radius distribution ensemble average tally results.

transmission rate between the sphere mean chord length cases increase with increasing sphere
volume fraction. These effects can be explained by the presence of larger streaming paths for
cases with larger sphere radii. For a given sphere mean chord length case, the transmission rate
decreases significantly with increasing sphere volume fraction as a result of increased absorption
in the spherical inclusions.

The absorption rate in the spherical inclusions for the different sphere mean chord length cases
and sphere volume fractions are plotted in Fig. 2(c). For all sphere mean chord length cases,
the absorption rate in the spherical inclusions monotonically increases with increasing sphere
volume fraction. At lower sphere volume fractions, significant differences in the absorption rate
are observed between the different sphere mean chord length cases. The absorption rate in the
spherical inclusions limits to approximately 0.6 for all cases at higher sphere volume fractions.

The absorption rate in the background matrix for the different sphere mean chord length cases
and sphere volume fractions are plotted in Fig. 2(d). For all cases, the absorption rate in the
background matrix monotonically decreases as the sphere volume fraction increases. For a given
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sphere volume fraction, the background matrix absorption rate decreases with decreasing sphere
radius (i.e. the case 3 rate is higher than the case 1 rate).

Overall, we find significant variations in the ensemble-averaged tally results for the different
sphere mean chord lengths and sphere volume fractions.

3.2 Uniform and Exponential Sphere Radius Distribution Results

In this section, we present benchmark results for cases in which the radii of the spheres are
given by the uniform and exponential distributions described in Section 2. The mean radius
used in each distribution is obtained from the sphere mean chord length in Table I using the
relationship in Section 2. The mean chord lengths in the spheres used for the different cases in
this section are the same as those used in the constant radius results of Section 3.1. Compared to
the constant radius distribution results, these sets of benchmark results demonstrate the effects
of different sphere radii within individual material realizations. To facilitate these comparisons,
we plot in Figs. 3 and 4 the ratio of the ensemble-averaged tally obtained using the given radius
distribution to the value of that tally obtained using the constant radius distribution.

As a general result, we first observe that the ensemble-averaged tallies from the exponential
radius distribution exhibit larger departures from the constant radius distribution results than
the uniform radius distribution.

The reflection rate for both the uniform and exponential radius distributions agrees with the
constant radius distribution result to within approximately 3%, with the largest differences
occurring for the exponential distribution and cases 2 and 3 (i.e. the larger sphere radius cases).
The tally ratios are greater than unity in nearly all cases, demonstrating that the reflection
rate obtained with the uniform and exponential sphere radius distributions is higher than for
the constant distribution. Given the approximately 2% statistical uncertainty in our results,
we conclude that the reflection rate is insensitive to the distribution describing the spherical
inclusion radius.

The transmission rate exhibits the largest departures from the constant radius distribution
results, with differences up to approximately 10% for the uniform radius distribution and up to
approximately 40% for the exponential radius distribution. We note that the transmission rate
obtained using the uniform and exponential radius distributions is higher than for the constant
radius distribution for all sphere mean chord lengths and sphere volume fractions. Because
the volume of a sphere scales as the cube of the radius, spheres that are larger than the mean
account for a disproportionately larger part of the total sphere volume fraction. The presence
of these larger spheres in a realization introduces additional open streaming paths for particles,
resulting in a higher transmission rate. The transmission rate ratios are typically higher for larger
sphere volume fractions. We conclude that the transmission rate is sensitive to the distribution
describing the spherical inclusion radius, with the exponential radius distribution particularly
producing significantly different transmission rates than the constant distribution.

The sphere absorption rate computed using the uniform and exponential radius distributions is in
all instances lower than for the constant radius distribution. The largest differences occur at the
lower sphere volume fractions. The uniform distribution produces sphere absorption rates lower
than the constant distribution by approximately 3% at the lowest sphere volume fractions, while
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Figure 3: Uniform sphere radius distribution ensemble average tally to constant distribution
tally ratios.

the exponential distribution produces differences of approximately 7%. The sphere absorption
rates agree to within approximately 1-2% at the higher sphere volume fractions. Therefore,
the sphere absorption rate is largely independent of the sphere radius distribution at larger
sphere volume fractions. We conclude that the sphere absorption rate is weakly sensitive to the
distribution describing the spherical inclusion radius.

The matrix absorption rate computed using the uniform and exponential radius distributions is
in all instances higher than for the constant radius distribution. The differences are generally
largest at the higher values of the sphere volume fraction, with the uniform radius distribution
producing values up to approximately 3% larger and the exponential radius distribution up to
approximately 10% larger. We conclude that the matrix absorption rate is weakly sensitive to
the distribution describing the spherical inclusion radius.
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Figure 4: Exponential sphere radius distribution ensemble average tally to constant distribution
tally ratios.

3.3 Standard Deviation Results

In this section, we briefly summarize the statistical uncertainty estimates for our benchmark
numerical results. The estimated standard deviation of the ensemble-averaged mean reflection
rate, transmission rate, and absorption rates in the sphere and background matrix materials are
less than 2% for all cases examined. (As noted above, we generated independent benchmark suite
numerical results from 5,400 simulations using a different random number stream. The ensemble-
averaged tally values from the duplicate suite agreed with the original suite to within 2.2% in
all cases, with most differences less than 1%.) The reflection rate standard deviation values
are generally the smallest while the transmission rate standard deviation values are generally
the largest. The standard deviation values increase with increasing mean sphere radius. The
constant and uniform sphere radius distributions produce similar standard deviations, while the
exponential distribution produces notably larger standard deviations.
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Because we simulated M = 100 independent material realizations, the standard deviations of the
material realization tallies about the mean are a factor of

√
M = 10 larger than the estimated

standard deviation of the tally mean about the true mean. As a result, the largest estimated
standard deviations of the material realizations approach 20% for the transmission rate tally
with the exponential radius distribution.

4. CONCLUSIONS

We described a parallel benchmark procedure and numerical results for a three-dimensional bi-
nary stochastic medium particle transport benchmark problem. The binary stochastic medium
is composed of optically thick spherical inclusions distributed in an optically thin background
matrix material. We investigated three sphere mean chord lengths, three distributions for the
sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from
0.05 to 0.3. We compared the ensemble-averaged benchmark fiducial tallies of reflection from
and transmission through the spatial domain as well as absorption in the spherical inclusion and
background matrix materials. For the parameter values investigated, our benchmark results
exhibit a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean
chord length and sphere volume fraction, with the most dramatic variation occurring for the
transmission through the spatial domain. Our benchmark results exhibit a weaker dependence
of most benchmark tally quantities on the distribution describing the sphere radii, provided the
sphere mean chord length used is the same in the different distributions. The exponential distri-
bution produces larger differences from the constant distribution than the uniform distribution
produces. The transmission through the spatial domain does exhibit a significant variation when
an exponential radius distribution is used.

The findings of our benchmark study are somewhat in contrast to those of Olson [18], who found
that different sphere radii gave similar results for a given sphere volume fraction. However, Olson
used a smaller spatial domain size of L = 1 and investigated spherical inclusions with mean chord
lengths at least an order of magnitude smaller than the smallest mean chord length in our study.
Future work covering a broader range of domain sizes and material parameters will be required
to resolve these discrepancies.

In future work, we plan to investigate additional mean chord length cases and different material
parameters. In addition, we plan to investigate additional inclusions shapes (e.g. ellipsoids) to
evaluate the impact of non-spherical inclusion shapes. Finally, the ultimate goal of this work is
to generate benchmark results to assess the accuracy of multi-dimensional Monte Carlo particle
transport algorithms for stochastic medium benchmark problems. We plan to report on these
comparisons in the future.
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